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We show that an inner product space V is complete iff the system of all splitting 
subspaces, i.e., of all subspaces M for which M + M  • V, possesses at least 
one completely additive state. 

1. I N T R O D U C T I O N  

Let V be a real or complex inner product space with an inner product  
( . ,  �9 ). By a subspace of V we shall understand a linear closed submanifold 
of  V. 

Denote by Sf(V) = {M _c V: M •177 = M}, where M • = {x ~ V: (x, y) = 0 
for all y ~ M} and by ~ (V)  the set of all splitting subspaces, i.e., of  all M 
for which M + M "  = V. It is well known that &e(V) is an or thocomplemented 
complete lattice with the operations AL and k/L satisfying the equalities 

(u / AL Mt = ~ M,, VL M, = sp M, (1) 
t ~ T  t o T  t ~ T  x , t ~ T  / 

where sp means the linear span. Analogously, ~ (V)  is an orthocomple- 
mented, or thomodular  orthoposet with the ope ra t ions /ke ,  Ve ;  moreover,  
~ (V)  c_ ~ ( V ) .  The g'(V) contains any complete subspace and therefore 
any finite-dimensional one. In addition, if VE Mt exists in ~(V) ,  then it is 
equal to VL M,. t 

t 

I f  V is complete, i.e., V is a Hilbert space, then ~ ( V ) =  5f(V) and 
~(V)  plays a considerable role in the axiomatic model of  quantum 
mechanics: see, for instance, Varadarajan (1968). Hence it is important  to 
find the conditions on ~ ( V )  or ~(V)  that characterize Hilbert spaces among 
inner product spaces. 
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An elegant characterization is due to Amemiya and Araki (1966): V is 
complete iff ~ ( V )  is orthomodular.  Hence, V is a Hilbert space whenever 
~ ( V )  = ~(V).  

An interesting measure-theoretic characterization of a separable inner 
product space has been presented by Hamhalter  and Pt~ik (1987): V is 
complete iff ~ ( V )  possesses at least one state. This result for nonseparable 
inner product  spaces has been generalized due to Dvure~enskij and Mi~fk 
(1988). 

The completeness characterization through ~(V)  has been given by 
Gross and Keller (1977): V is complete iff ~(V)  is a complete lattice; 
Catteneo and Marini (1986): V is complete iff ~(V)  is a ~r-lattice and 
Dvure~enskij (1988b): V is complete iff ~(V)  is a quantum logic, i.e., an 
orthocomplemented, orthomodular,  o--orthoposet. 

In the present paper we show that V is complete iff ~(V) possesses a 
totally additive state. This generalizes the result of Dvure~enskij (1989) 
from separable inner product  spaces to general ones. 

2. STATE CRITERION FOR COMPLETENESS 

In the present section, we prove the main result of the paper. Let m 
be a mapping from ~(V)  into [0, 1] such that: 

1. m ( V ) =  1 

2. m(~/EMtl= Y. m(Mt) 
\ t ~ T  / t ~ T  

whenever {M,: t c T} is a system of mutually orthogonal splitting 
subspaces for which the join exists in ~(V).  

If 2 holds for any finite index set, any countable or any T, m is said to 
be a finitely additive state, state, or completely additive state, respectively. 

We define these notions in an analogous way for LP(V). 
We recall that ~(V)  possesses many finitely additive states (Dvure~en- 

skij, 1988b): Let x be a unit vector of V. The mapping mx: ~(V)--)[0, 1] 
defined via 

mx(M) = [IxM II 2, M e  ~(V)  

where xM is a unique vector from M such that x = xM + x ~ ;  xM~ ~ M, is a 
finitely additive state and {mx: Ilxll = 1) is a quite full system of  finitely 
additive states, that is, the statement " i f  rex(M) = 1, then mx(N) = 1" implies 
M~N.  
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By the dimension of  an inner product space we mean the cardinality 
of  any maximal orthonormal set of V. It is clear that any separable inner 
product  space is countable-dimensional,  but the converse is not true in 
general. Indeed, Gudder  (1974) for m = No and Dvure~enskij (1988a) for 
general cardinals showed that if m is an infinite cardinal such that m ~o > m, 
then in any Hilbert space H of dimension m ~o there is a dense submanifold 
V of dimension m containing no orthonormal basis of H. 

I f  x is a nonzero vector from V, then by sp(x) we mean the one- 
dimensional subspace of  V spanned over x. 

Theorem. An inner product  space V is complete if and only if ~(V)  
possesses at least one completely additive state. 

Proof. The necessity is simple. Let T be a positive Hermitian operator 
from V into V of finite trace equal to 1. The mapping m r  defined via 

m r ( M ) = t r ( T P g ) ,  M e  ~ ( V )  (2) 

where P~  denotes the orthoprojector from V onto M, is a completely 
additive state on ~(V).  Moreover, Maeda (1980) proved that any completely 
additive state m on a complete inner product space V, dim V ~ 2, is represen- 
ted via (2). �9 

The sufficient condition follows from the following lemmas. 

L e m m a  1. Let {a~} and {bj} be maximal orthonormal systems (MONS) 
in splitting spaces M and M • Then (i) {a~}~ {bj} is a MONS in V; (ii) 
~/L sp(ai) = M. 

i 

Proof. (i) Suppose that x e V is orthogonal to all ai and bj. Express x 
in the form x = x u  + XM~, where XM e M and xM~ e M • Then 0 = (x, a~) = 
( x ~ ,  a~)+ (XM~, ai) = (XM, a~). The  maximality of  {a~} in M implies xM = O. 
Analogously, we prove XM~-----O, SO that x = 0 and {a~} ~ {bj} is an MONS 
in V. 

(ii) Denote 

Mo = VL sp(ai) 
i 

Then Mo_C M and M - - ~  M~-. Let now x e  M~. Then x_l_ai for any i. I f  we 
put x = XM + XM~, XM e M,  XM~ e M 1, then 0 = (x, ai) = (XM, ai). The maxi- 
mality of  {ai} gives XM = 0. Hence, x = xMl ~ M• in other words, M~- _c M~; 
consequently, Mo = M. �9 

Denote by SeE(V) the set of  all completely additive states on ~(V).  
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Lemma 2. If  SeE (V) ~ •, then, for any unit vector x ~ V, there is an 
s ~ See (V) such that 

s(sp(x)) > 0 (3) 

Proof Let m be a completely additive state on ~(V) and choose a 
MONS {xi} in V. Due to Lemma 1, 

~/L sp(xi) = V 
i 

The complete additivity of  m entails that there exists an x~ with m(sp(x~)) > 0. 
Let x be an arbitrary unit vector of V. Then Mo:= sp({x, x~})6 e(V) 

and we may define a unitary operator U:  V ~  V such that Uxi=x and 
Uy=y for any y~M~. The mapping s:M~--~rn(U-~(M)), Me ~(V), is 
an element o f f ~ ( V )  with (3). �9 

For any m ~ 5e~(V) we define the extension rh of  m from ~(V) to 
La(V) via 

and put 

r~(M)=sup{~ m(sp(ai)): {ai} is a MONS in M} (4) 

f 
3?,.(V) = ~ M ~ ~ (  V): if {a~} and {b~} are two MONS 

in M, then Y'i m ( s p ( a i ) ) = ~  m(sp(bi))} 

Lemma 1 entails that rfi(M) = m(M) for any M e ~(V) and s D ~(V).  

Lemma 3. Let {x~} be a nonvoid system of orthomormal vectors from 
V and put 

M = ~/L sp(xi) 
i 

If{yi} is an MONS in M • then {xi}u{y~} is a MONS in V. 

Proof Suppose z_l_x, y~ for all i and j. Then z • M, i.e., z ~ M • The 
maximality of {y j} in M • implies z = 0. �9 

Lemma 4. Under the condition of Lemma 3, M l ~ 5f,,(V). 
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Proof Let {yj} and {zj} be two MONS in M. According to Lemma 3, 
{xi} u {Yi} and {xi} u {zj} are two MONS in V. Therefore, 

Y, m(sp(xi)) + ~  m(sp (y j ) )=  1 = E  m(sp(xi)) +Y~ rn(sp(zj)) 
i j i j 

which gives ~j m(sp(yj))  = ~  m(sp(zj)). �9 

Lemma 5. Let v be a unit vector in the completion I7" of  V. Then, for 
any e > 0, there exists a 6 > 0 such that the following statement holds: 
I f  w ~ V is a unit vector such that I I v -  w[[ < 8, then, for any finitely 
additive state m on ~(V)  and each A~  ~(V)  satisfying the properties 
v Z A, 3 - dim A < oo, we have the inequality 

[m(A v sp(w)) - re(A)  - m(sp(w))[ < s (5) 

Proof. The proof  is identical to that of  Hamhal ter  and Pt~ik (1987) and 
therefore is omitted. �9 

Lemma 6. Let ~ee (V) ~ O. Under the conditions of  Lemma 3, 

VL sp(yi)  = M • 
i 

Proof First we show that if E is a finite-dimensional subspace of  M • 
then 

ff~( M • >- rn( E ) (6) 

for any m ~ 5e~(V). Indeed, let {ek}~,=l be an orthonormal basis in E. Choose 
an orthonormal system {zs} in M • such that {ek}~,=l U {Zs} is a MONS in 
M. By Lemma 4, 

rFz(M• = ~ m ( s p ( e k ) ) + ~ m ( s p ( z s ) )  > -- ~. m ( s p ( e k ) ) = m ( E )  
k = l  s k = l  

Let {yj} be a MONS in M • and put 

MO = V L sp( yj ) 
J 

We assert that Mo = M • I f  not, then l~r o ~ M l ,  where the bar over Mo and 
M • denotes the completion of Mo and M • respectively. Hence, there is a 
v ~ M • that is orthogonal to Mo. 

According to Lemma 2, without loss of  generality we may assume 
m(sp(z))  > 0 for some unit vector z c M • Put e -- rn(sp(z) ) /2  > 0. Applying 
Lemma 5 to v ~ M  -L and e, we find a w ~ M  • with [ [ w - v i i < 6  for some 
6 > 0 such that (5) holds for any finitely additive state. 
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Define a unitary operator  U : V -  V such that Uz = w and Ux = x for 
any x _L w, z, and put s ( B )  = m ( U - I ( B ) )  for any B ~ ~(V) .  Then s ~ SeE(V). 
Since Y.i s(sp(yi))  < oo, there is at most a countable index set Jo = {Jl,  J2 , . . .}  
such that s ( s p ( y j ) ) =  0 for any j ~ Jo. Definite finite-dimensional subspaces 
A, = s p ( { y j l , . . . ,  y~.}). Then there is an integer no such that 

g ( M  • = • s(sp(y~)) < s(A,o) + e (7) 
J 

Using the inequalities (5)-(7),  we conclude 

g ( M  • >- s(A,,  o v sp(w)) 

>- s(A,,o) + s(sp(w)) - e 

> g ( M  • - e + s(sp(w) - e = g ( M  • 

which contradicts the beginning of the last inequality. [] 

L e m m a  7. Under  the conditions of  Lemma 6, M ~ 37,,(V) for any 
m ~ See( V). 

Proof  This follows immediately from Lemmas 6 and 4. [] 

L e m m a  8. (i) I f  M ~ 3 ? , . ( V )  and if {x~} is a MONS in M, then 

VL sp(xi) = M 
i 

(ii) I f  A, B 6 3?,.(V), A ~ B, then B = A k/L B AL A • in particular, 
M ~ 37m(V) implies M l ~ 37m(V). 

(iii) I f  {M,: t ~ T} is a system of mutually orthogonal subspaces from 
3?,. (V), then 

V~ M, ~ ~,,,(V) 
t e T  

(iv) r~137,, (V) is a completely additive state on a quantum logic 37m(V). 

Proof  (i) This follows the same idea as the proof  of  Lemma 6. 
(ii) Let A, B ~ 3?,,( V),  A ~ B .  Choose a MONS {ai} in A and an 

orthonormal  system {bj} in B such that {ai} u {bj} is a MONS in B. In view 
of  (i), 

we put 

A =  VL sp(a,) ,  B =  VL Sp(a,) v VLsp(bj)  
i i j 

Bo = VL sp(bj) 
J 
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then Bo___ B n A • On the other hand, 

B = A V B o ~ A  v B n A I ~ B  
L L 

(iii) For any t~ T, let {x~: s~ Tt} be a MONS in Mr. Then 

M := VL Mt = VL VL sp(x~) 
t ~  T t ~  T s E  T t 

so that, according to Lemma 7, M ~ ~,~ (V). 
(iv) It is now evident that ~m(V) is a quantum logic in the sense of 

Varadarajan (1962) and r~[~m(V) is a completely additive state on 
Zt,. (V). �9 

X oo Lemma 9. Let { ~}~=1 be any sequence of orthonormal vectors from V. 
Then 

oo 

N~M:=Vtsp(xg), NE~(V)  
i = 1  

is an element of g o  (V). 

Proof Choose in N two MONS {ai} and {b~} and define 

A= VL sp(a,), B= VL sp(bi) 
i i 

Applying the Gram-Schmidt  orthogonalization process to al ,  bl, a2, b2, 
C co . . . ,  we find orthonormal vectors { ,}n=l such that 

2 n  n n 

V sp(c~)= V sp(a,)v V sp(b~) 
i ~ l  i = 1  i = 1  

Let 
oo 

C = VL sp(c,) _ N 
i = 1  

Then A, B, Corm(V) and, due to the maximality of {ai}~=l and {bi}~=~ 
in N, we see that they are also maximal in C. This implies A = B = C 
and ~ m ( s p ( a i ) )  =~im(sp(bi ) ) .  Consequently, N definitely belongs to 
~.,(v). �9 

Now we are ready to prove the main result of the paper; it is of interest 
to present two different proofs. 

Proof1. We show that, for any sequence of orthonormal vectors {x~}~ 
from V, the space 

r 

m = VL sp(xi) 
i = l  
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is splitting. Indeed, let us write LP(0, M)  = {N: N ~ 5f(V), N ~_ M}. In view 
of Lemmas 8 and 9, ~ (0 ,  M )  c LP(V) and it is a quantum logic in the sense 
of  Varadarajan (1962) with respect to a relative or thocomplement  ' defined 
via 

N ' : =  M n  N •  ~ (0 ,  M )  

It is evident that if we define Sg(M) = {N c M:  ( N  •177 = N}, where 
N T M  = { x e M :  (x, y) = 0  for all y e  N}, then N •  N • 

Let N e ~ ( 0 ,  M) .  Then N •  N'= N • so that N " =  N and 
( N •  • = N, which gives N ~ ~ ( M ) .  Conversely, let N ~ 5~(M); we show 
that N ~ LP(V). Indeed, since N c_ N •177 we conclude that if x is an arbitrary 
vector from V orthogonal to N • then x _1_ N • ___ M • so that x 6 M •177 = M. 
It is clear that for any subset A ___ M, A -t ~ A • Hence, 

N = N c~ M ___ N •177 = N 1• c~ M = (N•  •  c_q (N• T M  = N 

and N e ~ (  V); consequently, N e ~ (0 ,  M) .  
The equality S(0 ,  M )  = LP(M) implies, in view of  Lemma 8, that Lg(M) 

is orthomodular .  The result of  Amemiya and Araki (1966) asserts that in 
this case M is complete, and we know that any complete subspace of V is 
splitting. 

The criterion of Dvure~enskij (1988b) says that V is complete iff 5f(V) 
contains the join of  any sequence of orthogonal one-dimensional subspaces 
of  V, so that V is complete. 

Proof 2. We show that if 

A = ~/L sp(xi) 
i 

where {xi} is any nonvoid system of or thonormal  vectors from V, then A 
is splitting. Let y ~ V, y ~ A. From the covering property it follows that there 
exists a yl C V such that {Xi}k.)'[yl} is a MONS in A 7 t  sp(y). As in the 
proof  of  Lemma 6, we may find a completely additive state s on ~'(V) such 
that  

m(sp(xi)) < Z  s(sp(xi))+ s(sp(yl)) 
i i 

which gives Yl ~ 0. In any inner product  space we have 

M T L C = M + C  

whenever M e  ~ ( V )  and C is finite-dimensional. Using the covering 
property, AVLsp(y)=ATLsp(yl)=A+sp(yO. This shows that A is 
splitting. 
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Now let M ~ ( V )  be given and choose a MONS {Yi} in M. It is 
clear that 

A:= VL sp(yi) ~ M 
i 

On the other hand, let x ~ M. Since A is splitting, x = XA + XA~, where XA ~ A,  
XA~ C A L. The maximality of  {y~} in M entails XA~ = 0. Therefore, ~ ( V )  = 
g~(V), i.e., V is complete. 

The theorem is completely proved. �9 

In conclusion, we note that ~(V),  for V incomplete, gives an example 
of  an orthocomplemented,  or thomodular  poset with a quite full system of 
finitely additive states that possesses no completely additive state. In par- 
ticular, the example of  Gudder  (1974) described above gives a stateless 
~(V). 

Finally, we note that Dvure~enskij and Mi~k  (1988) proved that any 
state on ~ ( V )  of an inner product  space V whose dimension is a nonmeasur-  
able cardinal is completely additive. For the state on ~(V)  this conclusion 
is unknown to us. 
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